

Design of Geothermal District Heating in Iceland Exporting Lessons Learnt

Þorleikur Jóhannesson

Senior Mechanical Engineer M.Sc. Project Manager I Business Developer I Geothermal Engineering

Date: 2019-10-24

Verkís Consulting Engineers | +354 422 8000 | verkis.com | verkis@verkis.com

Topics

- Geothermal District Heating in Iceland
- Reykjavik Geothermal District Heating System
- Using the Experience from Reykjavik
 - Vestman Island Lava District Heating System
- Exporting Know-how to
 - China
 - Design and consultancy
 - Capacity Building
- Conclusion

Our story – The Reykjavík District Heating

Ash cloud over Reykjavík

Pipe insulation with Icelandic turf

Reykjavík, 100% heated with geothermal

Vestmann island – the Town

January 23rd 1973 - Eruption at Heimaey 1,5 km long volcanic fissure opened in the east part of the island

Ash clean-up

Heimaey - Westman islands

- 1973: 5.300 inhabitants
- Lava field:
 - 250 million cubic meters
 - Thickness 100-130 m
 - Estimated energy contained: 250 million megawatt hours
- Increased island area from 11,2 km² to 13,4 km²

The "wise guys"

1

Main system components:

SKORSTEINN

Steam collector installation

"Concrete Cave and tube" heat exchanger bundles

Concrete Cave cover over Heat Exchanger bundles

Steam collector covered with permeable rock/sand/plastic

Sea Water Heat Pump Station

Sea Water Heat Pump Station

The Development in Westman Islands

- 1973 Eruption in Heimaey
- 1977 Lava heating + 3 MW peak load oil boiler
- 1988 Electrical boiler 20 MW + 2 x 7 MW oil boilers as backup
- 1998 Heat from a garbage incineration plant
- 2000 Waste heat from fishing industry added
- 2016 Installed power: 20 MW for 5000 inhabitants
 - 4 kW pr. capita
 - Annual energy consumption: 70 GWh
 - 81% electricity, 9% from waste heat boilers, 6% fish processing factories and 4 % oil.
- 2018: 10,5 MW seawater heat pump (COP 3,5)

District Heating System will enhance harnessing low grade heating energy from natural or industrial re-sources

District Heating In China – Sinopec Green Energy Project

Poor Quality Installations

Capacity building

HSE Issues

Poor Housing Conditions

Housing Development

Old Buildings

- Supply temperature: 90°C
- Return temperatuer: 70°C
- Radiator heating
- Heating power: 70 W/m²
- Annual heating: 180 kWh/m²
- New Buildings served by SGE
 - Supply temperature: 45°C
 - Return temperatuer: 35°C
 - Floor heating
 - Heating power: 43 W/m²
 - Annual heating: 95 kWh/m²

Overall System Design Consultancy

🔆 VERKÍS

Heat Central system design consultancy

Heating development, Reykjavík and SGE projects

 \mathbf{e}

Heating Duration Curves

Heat Exchanger Stations Design Review

March 1

CTO of Arctic Green Energy corporation and SGEG

Integrity Ambition Initiative